PREPARATION D'ALCOOLS VINYLALLENIQUES (TRIENE -2,4,5 OLS-1)

par Jacques GORE et René ƁAUDOUY

Département de Chimie Organique - UNIVERSITE CLAUDE BERNARD 43, Boulevard du 11 Novembre 1918 69621 VILLEURBANNE (Received in France 25 June 1973; received in UK for publication 17 July 1973)

Il est connu que LiAlH₄ réduit facilement la triple liaison des alcools propargyliques pour conduire à des alcools allyliques dont la double liaison a la configuration trans (1). Le même type de réaction est observé en utilisant des acétates au lieu d'alcools (2).

Nous avons étudié la réduction des allénynols $\underline{1}$ ou de leurs acétates $\underline{2}$ et obtenu les alcools vinylalléniques $\underline{3}$ avec des rendements de 50 à 90% (tableau 1).

2 R=-CO-CH3

La réduction, effectuée dans un mélange éther - THF (1-1), donne $\underline{3}$ possédant une double liaison de configuration trans. La structure de l'alcool obtenu à partir de $\underline{2a}$ a été démontrée par hydrolyse à l'eau lourde. Deux alcools vinylalléniques pouvaient en effet résulter de la réduction :

Dans le spectre RMN du produit d'hydrolyse normale, les méthyles alléniques apparaissent sous forme d'un doublet à 1,65 ppm dont la constante de couplage de 3Hz est compatible avec les deux structures (couplage allylique ou couplage allénique). Le produit d'hydrolyse à l'eau lourde montre le même signal pour ces deux méthyles, ce qui vérifie le mécanisme et la structure de 3. Dans cette même série, le spectre RMN à 100MHz permet de distinguer les signaux respectifs des 3H éthyléniques : les deux protons portés par la double liaison sont 3361

couplés avec une constante de 14Hz, ce qui vérifie la configuration trans.

Par ailleurs, les spectres des alcools vinylalléniques 3 vérifient la structure proposée : masse (M $\overset{ extsf{t}}{\cdot}$), UV (éthanol) : 218 nm (ξ : 14.000 à 20.000) ; IR : γ_{OH} 3350 cm⁻¹, $\gamma_{C=C=C}$ 1950 cm⁻¹ et $\gamma_{C=C}$ 1640 cm⁻¹, δ H-C=C-H trans : 970-990 cm⁻¹; RMN: signaux des groupes R¹ à R⁴, 3 protons éthyléniques entre 5.4

Les alcools vinylalléniques 3 obtenus se sont tous révélés stables ; ils ont été conservés plusieurs semaines à -20°C et en solution dans l'éther sans dégradation ni polymérisation apparentes.

Cette réduction de $\underline{1}$ et $\underline{2}$ constitue un nouveau mode d'obtention de l'enchaînement vinylallénique pour lequel peu de méthodes de synthèse ont été proposées (3)(4). Elle présente l'avantage de partir de composés aisément accessibles :

- les allénynols sont obtenus selon (5) par réaction d'un alcool propargylique sur un chlorure de propargyle ;
 - les acétates 2 sont obtenus par la réaction suivante :

Cette réaction est effectuée à partir d'acétates tertiaires en opérant dans le DMF (à température ambiante) en présence de chlorure cuivreux et de tertiobutylamine (proportions relatives: 10⁻² mole d'acétate; 2.10⁻³ mole de CuCl; 2.10⁻² mole d'amine). Ce mode opératoire inspiré de LANDOR et coll. (6) permet le couplage de $\underline{4}$ sur lui-même, les conditions décrites pour obtenir les allényextstyle nols (5) étant dans ce cas inopérantes. Les acétates 2 $(\mathsf{R}^1 = \mathsf{R}^3 \; ; \; \mathsf{R}^2 = \mathsf{R}^4)$ sont obtenus avec d'excellents rendements (tableau 2) et caractérisés par les méthodes spectrales usuelles: masse (M⁺); IR ($\sqrt{\Omega_{c=0}}$ 2230 cm⁻¹, $\sqrt{\Omega_{c=0}}$ 1950-1960 cm⁻¹, $\gamma_{C=0}$ 1730 cm⁻¹; UV (éthanol) : λ_{max} 220 nm (ξ : 12.000 à 18.000); RMN (signaux correspondent à R¹ et R², DAc δ =1,95 ppm, H allénique δ =5,2 ppm).

REFERENCES

- 1 R.A. RAPHAEL et F. SONDHEIMER, J. chem. Soc., 1950, 3185
- 2 a) M. SANTELLI, Thèse, Marseille, 1972
 b) M. SANTELLI et M. BERTRAND, Bull. Soc. chim., sous presse
- 3 J. GRIMALDI et M. BERTRAND, Bull. Soc. chim., 1971, 947
- 4 a) J. GORE et J.P. DULCERE, Chem. Comm., 1972, 866
 - b) J.P. DULCERE, M.L. ROUMESTANT et J. GORE, Tetrahedron letters, 1972, 4465
 - c) J. GORE et A. DOUTHEAU, Tetrahedron letters, 1973, 253
- 5 A. SEVIN, W. CHODKIEWICZ et P. CADIOT, Tetrahedron letters, 1965, 1953
- 6 a) C.S.L. BAKER, P.D. LANDOR et S.R. LANDOR, J. chem. Soc., 1965, 4656 b) P.D. LANDOR, S.R. LANDOR et J.P. LEIGTON, Tetrahedron letters, 1973, 1019

Produit de départ		A lcool vinylallénique <u>3</u>		Rdt %
	<u>2a</u>	<u>3a</u>	$R^{1}=R^{2}=R^{3}=R^{4}=CH_{3}$	85
	<u>2c</u>	<u>3c</u>	R ¹ =R ² =CH ₃ R ³ =R ⁴ =t-C ₄ H ₉	83
<u>1e</u>	$R^1 = R^2 = CH_3$ R^3 , R^4 = cyclohexyle	<u>3e</u>	$R^1 = R^2 = CH_3$ R^3 , $R^4 = cyclohexyle$	80
<u>1f</u>	R^1 , R^2 = cyclohexyle $R^3 = R^4 = CH_3$	<u>3f</u>	R^1 , R^2 = cyclohexyle $R^3 = R^4 = CH_3$	60
19	$R^{1}=R^{3}=R^{4}=CH_{3}$ $R^{2}=C_{6}H_{5}$	<u>3q</u>	R ¹ =R ³ =R ⁴ =CH ₃ R ² =C ₆ H ₅	50
<u>1h</u>	$R^1 = C_6 H_5$, $R^2 = H$	<u>3h</u>	$R^{1}=C_{6}H_{5}, R^{2}=H$	
	R ³ =R ⁴ =CH ₃		R ³ =R ⁴ =CH ₃	60

A cétates de départ	Acétates <u>2</u> obtenus	Rdt %
<u>4a</u> R ¹ =R ² =CH ₃	$\frac{2a}{2} R^{1} = R^{2} = R^{3} = R^{4} = CH_{3}$	78
<u>4ь</u> R ¹ =СН ₃ , R ² =С ₂ Н ₅	$\frac{2b}{2}$ R ¹ =R ³ =CH ₃	65
1 2	R ² =R ⁴ =C ₂ H ₅	65
<u>4c</u> R ¹ =CH ₃ , R ² =t-C ₄ H ₉	$\begin{bmatrix} 2c & R^1 = R^3 = CH_3 \\ R^2 = R^4 = t - C_4H_9 \end{bmatrix}$	60
$\frac{4d}{R}$ R ¹ , R ² = cyclohexyle	2d R ¹ , R ² =R ³ , R ⁴ = cyclohexyle	73
	Cyclonexyle	13

Tableau 2

Couplage des acétates d'alcools propargyliques

les rendements indiqués sont calculés à partir de quantités de produits récupérés par chromatographie sur colonne dans des réactions à l'échelle préparative.